Branching from degenerate solutions of a nonlinear eigenvalue problem
نویسندگان
چکیده
منابع مشابه
A Nonlinear Eigenvalue Problem
My lectures at the Minicorsi di Analisi Matematica at Padova in June 2000 are written up in these notes1. They are an updated and extended version of my lectures [37] at Jyväskylä in October 1994. In particular, an account of the exciting recent development of the asymptotic case is included, which is called the ∞-eigenvalue problem. I wish to thank the University of Padova for financial suppor...
متن کاملMultigrid Techniques for Nonlinear Eigenvalue Problems; Solutions of a Nonlinear Schrodinger Eigenvalue Problem in 2D and 3D
Algorithms for nonlinear eigenvalue problems (EP), often require solving selfconsistently a large number of EP. Convergence di culties may occur if the solution is not sought in a right neighborhood; if global constraints have to be satis ed; and if close or equal eigenvalues are present. Multigrid (MG) algorithms for nonlinear problems and for EP obtained from discretizations of partial di ere...
متن کاملBifurcation from a degenerate simple eigenvalue
It is proved that a symmetry-breaking bifurcation occurs at a simple eigenvalue despite the usual transversality condition fails, and this bifurcation from a degenerate simple eigenvalue result complements the classical one with the transversality condition. The new result is applied to an imperfect pitchfork bifurcation, in which a forward transcritical bifurcation changes to a backward one wh...
متن کاملA linear eigenvalue algorithm for the nonlinear eigenvalue problem
The Arnoldi method for standard eigenvalue problems possesses several attractive properties making it robust, reliable and efficient for many problems. Our first important result is a characterization of a general nonlinear eigenvalue problem (NEP) as a standard but infinite dimensional eigenvalue problem involving an integration operator denoted B. In this paper we present a new algorithm equi...
متن کاملSolutions to a quadratic inverse eigenvalue problem
In this paper, we consider the quadratic inverse eigenvalue problem (QIEP) of constructing real symmetric matrices M,C, and K of size n× n, with (M,C,K) / = 0, so that the quadratic matrix polynomial Q(λ) = λ2M + λC +K has m (n < m 2n) prescribed eigenpairs. It is shown that, for almost all prescribed eigenpairs, the QIEP has a solution with M nonsingular if m < m∗, and has only solutions with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1987
ISSN: 0022-247X
DOI: 10.1016/0022-247x(87)90113-2